Ausgangswerte und geometrische Verhältnisse (Vertikalschä	chte):		RS 2	RS 3	RS 4
Voraussichtliche Verbauart				Bohrpfahl	
Voladoolomiono Volbadan			Spritzbeton	wand	wand
Gesamtdauer der Wasserhaltung in Monaten ca.	TwH	=	6,	6	6 Mon
Zugangsschacht: Durchmesser	d	=	10	10	10 m
Durchmesser des Kreises aus Absenkbrunnen um den Schacht	d br		/14	14	14 m
Zugangsschacht: Tiefe BGS unter GOK	t	=	/ 37	20	23 m
Zugangsschacht: Umfang	U	=	/ 31	31	31 m
Zugangsschacht: Grundfläche ca.	Α	=	/ 79	79	79 m²
GOK ca.		/	522,9	521,4	520,0 müNN
Zugangsschacht: tiefste BGS			485,9	501,4	497,0 müNN
OK-Tertiär			512,0	511,5	511,0 müNN
Wasserstand Bauzeit HWBau			516,4	515,8	515,4 müNN
Bemessungswasserstand HWEnd			517,5	517,0	516,7 müNN
Zugangsschacht: Absenkziel			485,4	500,9	496,5 müNN
Druckluftunterstützung	Ρ/	=	0,0	0,0	0,0 bar
Angesetzte Mindesttiefe Entspannungsbrunnen unter Sohle			15,0	15,0	15,0 m
(Minumum aus 1,5 x d und 1,1 x (HWBau - tiefste BGS)					
Mindesttiefe Entspannungsbrunnen müNN ca.			470,9	486,4	482,0 müNN
Mindesttiefe Entspannungsbrunnen ab GOK ca.			52,0	35,0	38,0 m
Filterstrecke Entspannungsbrunnen ca.		von	37,0	20,0	23,0 m
		bis	52,0	35,0	38,0 m
Angenommene mittlere Gesamtdicke der zu entspannenden bzw.	m _{entsp}	=	10,0	11,0	10 m
zu entwässernden Tertiärsandlagen gemäß Bodenaufschlüssen					
Erforderliche Gesamtabsenkung HWBau (Mixtel)	S	=	31,0	14,9	18,9 m
Absenkung innerhalb der Baugrube im Quartär bei HWBau (Mittel)	Sq	=	4,4	4,3	4,4 m
Absenkung innerhalb der Baugrube im Tertiär bei HWEnd	St	=	26,6	10,6	14,5 m
Potential der Entspannungswasserhaltung unter Berücksichtigung	S _{ent}	=	31,0	14,9	18,9 m
der Druckluft					
LIK Files Vessial as a selection of OK Testino			540.0	544.5	544.0 "NN
UK Filter Versickerungsbrunnen Quartär (=OK Tertiär)			512,0	511,5	511,0 müNN
Stauhöhe im Sickerbrunnen Quartär (max. HWEnd)	Zq	=	1,1	1,2	1,3 m
Stauhöhe im Sickerbrunnen Quartär (bis GOK)	Zq max	=	6,5	5,6	4,6 m
Stauhöhe in der Rigole	Zrig	=	1,0	1,0	1,0 m
Brunnenradius (Quartär)	r q	=	0,30	0,30	0,30 m
benetzte Filterlänge Quartärversickerung	h´q	=	5,5	5,5	5,7 m
Sohlbreite eine Sickerrigole	b Rig	=	0,5	0,5	0,5 m
k-Wert Tertiärsand	k (ts)	=	5.0E-05	5,0E-05	5,0E-05 m/s
k-Wert Tertial and k-Wert Quarkarkies (Versickerung)	ksick (q)	_	1,3E-03	1,3E-03	1,3E-03 m/s
it violi qualitico (voisioneralig)	Noion (4)	_	1,32-03	1,01-00	1,02 00 111/3
Quartäre Grundwassermächtigkeit HW End (Mittel)	H End (q)	=	5,5	5,5	5,7 m
Quartäre Grundwassermächtigkeit HW Bau (Mittel)	H Bau (q)		4,4	4,3	4,4 m
Entyasserbarer Porenanteil Quartar	n (q)	=	0,25	0,25	0,25
Eptwässerbarer Porenanteil Tertiär (Mittel Ton/Sand)	n (t)	=	0,15	0,15	0,15
Bemessungsniederschlag mit 10-jähriger Häufigkeit	r 15(0,1)	=	0,271	0,271	0,271 m ³ /(s ha)

2. SBS - PFA 1: Anhang 4 zu Anlage 18.1 Hydraulische Berechnungen Rettungsschächte: (RS2 Bau-km 103,8+72, RS3 Bau-km 104,4+45, RS4 Bau-km 105,0+40)

Blatt 4. 2

I Rettungsschächte (Vertikalschächte): Berechnung der Wassermengen

Die Abschätzung der zu fördernden Wassermengen der Restwasserhaltung des wasserundurchlässiger, Baugrubentroges erfolgt für den hohen angenommenen Wasserstand HWBau.

Trogwasser (vereinfacht zum erstmaligen Absenken)

$$VTrog = A \times [s (q) \times n (q) + s (t) \times n (t)] =$$

RS RS₃ RS 4 400 209 257 m³

Zum Abpumpen dieser Wassermenge innerhalb von 10 Tagen ist folgend Pumpleistung/erforderlich:

 $x 1000 / (10 \times 24 \times 3600) =$

0,5 0,2 0.3 l/s

Restwasser aus Umströmung der Umschließung:

Restwasser aus Umströmung der Umschließung wird nicht angesetzt, da das den Schächten von unten durch eine Sohlschicht zuströmente Wasser, bei ausreichender Brunnenanzahl und Tiefe vollständig von der Tertiärentspannung aufgenommen wird.

Sickerwasser aus der Baugrubenumschließung (nur Bohrpfahlwand / Schlitzwand):

Zur Abschätzung der Sickerwassermenge wird einheitlich q = 0,0%2 m³/s je 1000 m² benetzter Fläche der Baugrubenumschließung angenommen. Die Berechnung erfolgt für die benetzte Mantelfläche der Umschließung unter HWBau.

Höhe der benetzten Mantelfläche der Umschließung

Q Wand = $U \times x \times 0,002 / 1000 =$ Q Wand =

15,9 m 4,4 11,9 0,0003 0,0007 0,0010 m³/s 1.0 l/s 0.3 0.7

Bei einem Betrieb der Wasserhaltung von TWH/st entsprechend dieser Abschätzung etwa mit folgender Wassermenge zu rechnen:

Q Wand x $(3600 \times 24 \times 365 \times TWH / 12)$

15752 m³/TWH 4359 11789

Wassermenge der Tertiärentspapnung / Tertiärenwässerung:

Zur überschlägigen Abschätzung des Wasserandrangs der Tertiärwasserhaltung wird von feinkornarmen Tertiärsandlagen der Gesamtnyachtigkeit mentsp ausgegangen, die im zu entspannenen und zu etwässernden

Tiefenbereich anstehen. Die Entspannung erfolgt bis auf das Niveau der Restwasserhaltung im Schacht.

Wasserandrang zur Bau grube (Ersatzbrunnen) bei gespanntem Grundwasser:

	RS 2	RS 3	RS 4
Are = d br / 2 =	7,0	7,0	7,0 m
$R = 3000 \times s \times \sqrt{k} (ts) =$	658	316	401 m
Q entsp. = $(2 \times x \times $	0,0214	0,0135	0,0147 m ³ /s
Q entsp. =	21,4	13,5	14,7 l/s

Bei einer Betriebszeit der Wasserhaltung von TwH fallen entsprechend dieser Abschätzung etwa folgende Wassermengen aus der Tertiärwasserhaltung an:

 \emptyset Entsp x (3600 x 24 x 365 x TWH / 12) =

231285 m3/TWH 213088 338035

2. SBS - PFA 1: Anhang 4 zu Anlage 18.1 Hydraulische Berechnungen Rettungsschächte: (RS2 Bau-km 103,8+72, RS3 Bau-km 104,4+45, RS4 Bau-km 105,0+40)

Blatt 4. 3

Niederschlagswasser:

Im dichten Baugrubentrog muß das anfallende Niederschlagswasser zeitlich verzögert von der Wasserhaltung gefördert werden. Beim 15-minütigen Bemessungsregen $r_{15(0,2)}$ fällt in der Baugrube folgende Wasserprenge an:

	RS2 /	RS 3	RS 4
QN15 = $r_{15(0,2)}$ x 15min x 60s x A x 1/10000m ² =	1,9	1,9	1,9 m ³ / 15 min
Diese Niederschlagswassermenge kann bei einer zusätzlichen Pumpleistung von	0,2	0,2	0,2 l/s
in etwa drei Stunden mit der Restwasserhaltung abgepumpt werden			

Bei einem Jahresniederschlag von ca. 950 mm fällt bei einer angenommenen Bauzeit von Twh bis zur Inbetriebnahme einer geordneten Oberflächenentwässerung folgende Wassermenge an:

Q NJahr = $0.95 \text{ m}^3/\text{m}^2 \text{ x A x TWH/ } 12 =$	37	37	37 m³/TwH
	RS 2	RS 3	RS 4
Dies entspricht bei der Restwasserhaltung einer durchschnittlichen Förderrate von:	0,000002	0,000002	0,000002 m/s =
	0,00237	0,00237	0,00237 l/s
Gesamtwassermengen während der Bauzeit:			
Rettungsschächte (Vertikalschächte)			
Wasseranfall:	RS 2	RS 3	RS 4
Trogwasser	0,5	0,2	0,3 l/s
Sickerwasser Baugrubenumschließung	0,3	0,7	1,0 l/s
Tertiärentspannung / Tertiärwasserhaltung	21,4	13,5	14,7 l/s
Niederschlagswasser (Mittel)	0,0	0,0	0,0 l/s
Niederschlagswasser (Starkregen)	0,2	0,2	0,2 l/s
Während des Leerpumpens des Troges	0,7	1,0	1,3 l/s
Wasserhaltungsbetrieb + Starkregen	21,9	14,4	15,8 l/s
Wasserhaltungsbetrieb	21,7	14,3	15,7 l/s
Gesamtwassermenge:	342831	225124	247332 m³
William data la companya da Tarana iatawa falana da manimala wa aka manimala wa ka manimala wa ka manimala manimala wa ka manima ka manima ka manima ka manima ka manima ka manima ka mani	. \^/		h
Während des Leerpumpens des Troges ist von folgender maximaler rechnerische	r wassermend	je auszuge	nen:

ens des Troges ist von folgender maximaler rechnerischer Wassermenge

1.3 l/s Q MAX Absenk = Trogw. + Sickerw. + Niederschlag = 0.7 1.0

Nach Inbetriebrahme der Tertiärentspannung ist unter Berücksichtigung eines Starkregenereignisses von folgender maximaler rechnerischer Restwassermenge auszugehen:

Q MAX Res = Sickerwasser + Tertiärentspannung + Starkregen = 21,9 14,4 **15,8** l/s

Ohne Berücksichtigung des Starkregens reduziert sich die rechnerische Restwassermenge nach dem Leerpumpen des Troges auf:

Q MAX Rest = Sickerw.+ Tertiärentspannung + Niederschlagswasser = 21,7 14,3 **15,7** l/s

	- PFA 1: Anhang 4 zu Anlage 18.1 lische Berechnungen Rettungsschächte:			Blatt 4. 4
•	au-km 103,8+72, RS3 Bau-km 104,4+45, RS	64 Bau-km 105,0+40)		
II Rettun	gsschächte (Vertikalschächte): Berechnung der Grun			_
	nlen Wasserhaltungsbetrieb fallen rechnerisch bis zu ca. rd die Versickerungsmöglichkeit durch Brunnen oder Rigol	RS 2 21,7 Ien im Quartärkies untersucht.	R 8 3	RS 4 15,7 l/s
Maximal z	zu versickernde Wassermenge Qs =	0,02/9	0,0144	0,0158 m
Die rechn durchgefü	versickerung (Quartär ungespannt): nerische Abschätzung der Brunnenversickerung im Quartä ührt. Um den Einstau von Nachbargebäuden über natürlich Aufstau im Brunnen wird für die Berechnung auf den Wass	ne Verhältnisse hinaus zu verh		HWBau
Reichweit	te R (q) des Aufstaukegels bei Versickerung im Quartärkie	/		
R(q) = 30	000 x zq x √ksick (q) =	RS 2 119	RS 3 130	RS 4 141 m
	tigte Fläche nach Depuit-Thiem (Ersatzradius): n R (q)+ π x ksick (q) x [HBau² - (HBau + zq)²] / Qs =	2,75	1,54	1,56 4,77 m
/ II =		15,60	4,66	4,77 111
	aukegel reicht je nach Versickerungsstandort unter Nachb		·	
Der Aufsta hinaus.	aukegel reicht je nach Versickerungsstandort unter Nachb zelbrunnen abströmende Wassermenge	argrundstücke, geht aber nich	it über HW	End
Der Aufstahinaus. Vom Einz			·	End RS 4 -0,0087 m
Der Aufstahinaus. Vom Einz Qs = Qs =	relbrunnen abströmende Wassermenge	eargrundstücke, geht aber nich RS 2 -0,0074	RS 3	End RS 4 -0,0087 m
Der Aufstahinaus. Vom Einz Qs = Qs =	zelbrunnen abströmende Wassermenge π x ksick x [HBau² - (HBau + zo/²] / (In R - In rq) =	eargrundstücke, geht aber nich RS 2 -0,0074	RS 3	RS 4 -0,0087 m -8,7 l/s
Der Aufstahinaus. Vom Einz Qs = Qs = Fassungs qs = qs =	zelbrunnen abströmende Wassermenge π x ksick x [HBau² - (HBau + zo)²] / (In R - In rq) = svermögen eines Sickerbrunnens:	RS 2 -0,0074 -7,4 -0,0249 -24,9	RS 3 -0,0079 -7,9	RS 4 -0,0087 m -8,7 l/s
Der Aufstahinaus. Vom Einz Qs = Qs = Fassungs qs = qs = Der gering	zelbrunnen abströmende Wassermenge: $\pi \times \text{ksick} \times [\text{HBau}^2 - (\text{HBau} + z_0)^2] / (\text{In R - In rq}) =$ svermögen eines Sickerbrunnens: $2 \times \text{rq} \times \pi \times \text{h'q} \times x \times (\text{k sick (q)} / 15) =$	RS 2 -0,0074 -7,4 -0,0249 -24,9	RS 3 -0,0079 -7,9	RS 4 -0,0087 m -8,7 l/s -0,0258 m -25,8 l/s
Der Aufstahinaus. Vom Einz Qs = Qs = Fassungs qs = qs = Der gering rechnerise	relbrunnen abströmende Wassermenge: $\pi \times \text{ksick} \times [\text{HBau}^2 - (\text{HBau} + z_0)^2] / (\text{In R - In rq}) =$ svermögen eines Sickerbrunnens: $2 \times \text{rq} \times \pi \times \text{h'q} \times \text{ksick} \text{ (q) } / 15 =$ gere Wert aus Abströmung und Fassungsvermögen ist ma	RS 2 -0,0074 -7,4 -0,0249 -24,9	RS 3 -0,0079 -7,9 -0,0249 -24,9	RS 4 -0,0087 m -8,7 l/s -0,0258 m -25,8 l/s
Der Aufstahinaus. Vom Einz Qs = Qs = Fassungs qs = qs = Der gering rechnerise Rigolenve	relbrunnen abströmende Wassermenge: π x ksick x [HBau² - (HBau + zg)²] / (In R - In rq) = svermögen eines Sickerbrunnens: 2 x rq x π x h'q x x (k sick (q) / 15 = gere Wert aus Abströmung und Fassungsvermögen ist ma	RS 2 -0,0074 -7,4 -0,0249 -24,9 aßgeblich:	RS 3 -0,0079 -7,9 -0,0249 -24,9	RS 4 -0,0087 m -8,7 l/s -0,0258 m -25,8 l/s
Der Aufstahinaus. Vom Einz Qs = Qs = Fassungs qs = qs = Der gering rechnerise Rigolenve	relbrunnen abströmende Wassermenge: π x ksick x [HBau² - (HBau + zg)²] / (In R - In rq) = svermögen eines Sickerbrunnens: 2 x rq x π x h'q x x (k sick (q) / 15 = gere Wert aus Abströmung und Fassungsvermögen ist ma	RS 2 -0,0074 -7,4 -0,0249 -24,9 aßgeblich:	RS 3 -0,0079 -7,9 -0,0249 -24,9	End

Ausgangswerte und geometrische Verhältnisse (Stollenbauwerke): RS3 RS₄ RS 2 Gesamtdauer der Wasserhaltung ca. 6 10 Mon = Zu entwässernde Länge des Stollensystems zusammen mit = 85 **1**20 185 m а dem Vertikalschacht im Grundriss ca. Zu entwässernde mittlere Breite im Grundriss ca. 10 10 b 10 Stollendurchmesser bzw. Höhe ca. d Stollen 5 m = 5 850 Zugangsschacht: Grundfläche ca. Α 1200 1850 m² = 520.0 müNN GOK ca. 522,9 521,4 höchste Stollenfirste ca. 510,0 505,0 müNN 502,0 tiefste Stollensohle ca. 487,0 495,0 482,0 müNN OK-Tertiär 512,0 511,5 511,0 müNN Wasserstand Bauzeit HWBau 516,4 515,8 515,4 müNN Bemessungswasserstand HWEnd 517,5 517,0 516,7 müNN 481,5 müNN Absenkziel 486,5 494,5 1,0 bar Druckluftunterstützung 1,0 1,0 Mindesttiefe Entspannung unter Sohle: ca 1,5 x d Stollen 7,5 7,5 m 7,5 Mindesttiefe Entspannungsbrunnen bis müNN ca. 479,5 487,5 474,5 müNN Mindesttiefe Entspannungsbrunnen ab GOK ca. 43,4 33,9 45,5 m Filterstrecke Entspannungs- Entwässerungsbrunnen ca. von 20 11 15 m bis 43 34 46 m Angenommene mittlere Gesamtdicke der zu entspannenden 10,0 13 11 m m_{entsp} bzw. zu entwässernden Tertiärsandlagen gemäß Bodenaufschlüssen Gesamtabsenkung bei HWBau (Mittel) s 29,9 21,3 33,9 m = Potential der Entspannungswasserhaltung unter 23,9 m 19,9 11,3 \textbf{S}_{ent} = Berücksichtigung der Druckluft, 511,0 müNN UK Filter Versickerungsbrunnen Quartär (=OK Tertiär) 512,0 511,5 Stauhöhe im Sickerbruphen Quartär (max. HWEnd) 1,3 m 1,1 1,2 Ζq = Stauhöhe im Sickerbrunnen Quartär (bis GOK) 4,6 m 6,5 5,6 = Za max Stauhöhe in der Rigole 1,0 1,0 1,0 m Zrig = Brunnenradius (Quartär) 0,30 0,30 0,30 m = **r**q 5,7 m benetzte Filterlange Quartärversickerung h′q 5,5 5,5 = Sohlbreite eine Sickerrigole 0,5 m 0,5 0,5 b Rig k-Wert Tertiärsand k (ts) 5,0E-05 5,0E-05 5,0E-05 m/s k-Wert Quartärkies (Versickerung) 1,3E-03 m/s ksick (q) 1,3E-03 1,3E-03

HBau (q)

4,4

4,3

4,4 m

Quartäre Grundwassermächtigkeit HWBau (Mittel)

Blatt A. 6

I Rettungsschächte (Stollenbauwerke): Berechnung der zu fördernden Wassermengen,

Die Abschätzung der zur Herstellung der Stollen zu fördernden Wassermengen erfolgt für den hohen angenommenen Wasserstand HWBau als Zuströmung zu einer (fiktiven) Baugrube in der alle zu errichtenden Stollen liegen (Ersatzbrunnenverfahrern).

Wassermenge der Tertiärwasserhaltung- und Entspannung:

Zur überschlägigen Abschätzung des Wasserandrangs wird der Zustrom in allen Tertiärsandlagen der Gesamtmächtigkeit mentsp berechnet, die von Brunnen im Tiefenbereich des Stollens und der darunter liegenden Entspannungstiefe erfasst werden.

Die Entspannung erfolgt bis auf Höhe UK-Stollen - 0,5 fr

Wasserandrang zur Baugrube (Ersatzbrunnen) bei gespanntem Grundwasser:

Q =	20,1	19,0	33,6 l/s
Q = $(2 \times \pi \times k \text{ (ts)} \times pr_{\text{entsp}} \times s_{\text{ent}} / (\text{InR - InARE}) =$	0,0201	0,0190	0,0336 m³/s
$R = 3000 \times s \times \sqrt{k} (ts) =$	634	452	719 m
Are =	28,3	40,0	61,7 m
ARE = a /3 (für langgestreckte Baugraben)			
ARE = a x 0,195 + b x 0,385 (für rechteckige Baugruben)	RS 2	RS 3	RS 4

Bei einer Betriebszeit der Wasserhaltung von TwH fallen entsprechend dieser Abschätzung etwa folgende Wassermengen aus der Tertiärwasserhaltung/entspannung an:

 \cancel{Q} Entsp x (3600 x 24 x 365 x TWH / 12) = 317120 400185 883634 m³/TWH

2. SBS - PFA 1: Anhang 4 zu Anlage 18.1 Hydraulische Berechnungen Rettungsschächte: (RS2 Bau-km 103,8+72, RS3 Bau-km 104,4+45, RS4 Bau-km 105,0+40)

II Rettungsschächte (Stollenbauwerke): Berechnung der Grundwasserversickerung

Maximal zu versickernde Wassermenge Qs =

0,0201

0,0190

0,0336 m³/s

Blatt 4.7

Brunnenversickerung (Quartär ungespannt):

Die rechnerische Abschätzung der Brunnenversickerung im Quartär wird für den ungünstigen Wasserstand HWBau durchgeführt. Um den Einstau von Nachbargebäuden über natürliche Verhältnisse hinaus zu verhindern, wird der Aufstau im Brunnen für die Berechnung auf HWEnd begrenzt.

Reichweite R (q) des Aufstaukegels bei Versickerung im Quart	ärkies	RS 2	RS 3	RS 4
R (q) = $3000 \text{ x zq x } \sqrt{\text{ksick (q)}} =$		119	130	141 m
Die benötigte Fläche nach Depuit-Thiem (Ersatzradius):		0.57	0.04	2.25
In ARE = In R (q)+ π x ksick (q) x [HBau - (HBau + zq) ²] / Qs = ARE =		2,57 13,03	2,34 10.41	3,35 28.54 m

Der Aufstaukegel reicht je nach Versickerungsstandort unter Nachbargrundstücke, geht aber nicht über HWEnd hinaus.

Vom Einzelbrunnen abströmende Wassermenge:

Qs =	π x ksick x [HBau ² - (HBau + zq) ²] / (In R - In rq) =	-0,0074	-0,0079	-0,0087 m³/s
Qs =		-7,4	-7,9	-8,7 l/s
	/			

Fassungsvermögen eines Sickerbruphens:

qs =	$2 \times rq \times \pi \times h'q \times \sqrt{(k \text{ sick } (q) / 15} =$	-0,0249	-0,0249	-0,0258 m ³ /s
qs =		-24,9	-24,9	-25,8 l/s

Der geringere Wert aus Abströmung und Fassungsvermögen ist maßgeblich: rechnerische Mindestanzahl der Brunnen:

2,7 2,4 3,9 Stk

Rigolenversickerung im Quartär:

Die Abschätzung der Sickerleistung erfolgt in Anlehnung an ATV 138 für eine Rigole mit 0,5 m Breite, die 1 m hoch eingestaut werden kann.

qs =	(bRig + $z/2$) x k sick (q) =	-0,0013	-0,0013	-0,0013 m³/s je lfdm
qs =		-1,30	-1,30	-1,30 l/s je lfdm
L/ig=	$Qs/q_s =$	15,5	14,6	25,9 m

Ausgangswerte und geometrische Verhältnisse (Vertikalschächte):			RS 2	RS 3	RS 4
Voraussichtliche Verbauart			Bohrpfahl-	Bohrpfahl-	Bohrpfahl-
			wand	/ Schlitz-	wand
Coopertdouer der Wesserheltung in Maneton es	TWH	=	7	wand 7	7 Mon
Gesamtdauer der Wasserhaltung in Monaten ca. Zugangsschacht: Durchmesser	d	_	10	10	10 m
Durchmesser des Kreises aus Absenkbrunnen um den Schacht	d br	_	14	14	14 m
Zugangsschacht: Tiefe BGS unter GOK	t	=	14	21.5	21 m
Zugangsschacht: Umfang	U	=	31	31	31 m
Zugangsschacht: Grundfläche ca.	Α	=	79	79	79 m²
GOK ca.			522.0	522.9	520.3 müNN
Zugangsschacht: tiefste BGS			508.0	501.4	499.3 müNN
OK-Tertiär			512.0	511.5	511.0 müNN
Wasserstand Bauzeit HWBau			516.4	515.8	515.4 müNN
Bemessungswasserstand HWEnd			517.5	517.0	516.7 müNN
Zugangsschacht: Absenkziel			507.5	500.9	498.8 müNN
Druckluftunterstützung	Р	=	0.0	0.0	0.0 bar
Angesetzte Mindesttiefe Entspannungsbrunnen unter Sohle (Minimum a	us		9.2	15.0	15.0 m
1,5 x d und 1,1 x (HWBau - tiefste BGS)	40		0.2	10.0	10.0 111
Mindesttiefe Entspannungsbrunnen müNN ca.			498.8	486.4	484.3 müNN
Mindesttiefe Entspannungsbrunnen ab GOK ca.			23.2	36.5	36.0 m
Filterstrecke Entspannungsbrunnen ca.		von	14.0	21.5	21.0 m
		bis	23.2	36.5	36.0 m
Angenommene mittlere Gesamtdicke der zu entspannenden bzw. zu entwässernden Tertiärsandlagen gemäß Bodenaufschlüssen	m _{entsp}	=	3.2	16.8	5.4 m
Erforderliche Gesamtabsenkung HWBau (Mittel)	s	=	8.9	14.9	16.6 m
Absenkung innerhalb der Baugrube im Quartär bei HWBau (Mittel)	sq	=	4.4	4.3	4.4 m
Absenkung innerhalb der Baugrube im Tertiär bei HWEnd	st	=	4.5	10.6	12.2 m
Potential der Entspannungswasserhaltung unter Berücksichtigung der Druckluft	s _{ent}	=	8.9	14.9	16.6 m
UK Filter Versickerungsbrunnen Quartär (=OK Tertiär)			512.0	511.5	511.0 müNN
Stauhöhe im Sickerbrunnen Quartär (max. HWEnd)	zq	=	1.1	1.2	1.3 m
Stauhöhe im Sickerbrunnen Quartär (bis GOK)	zq max	=	5.6	7.1	4.9 m
Stauhöhe in der Rigole Brunnenradius (Quartär)	zrig	_	1.0 0.30	1.0 0.30	1.0 m 0.30 m
benetzte Filterlänge Quartärversickerung	rq h´q	=	5.5	5.5	0.30 m 5.7 m
Sohlbreite eine Sickerrigole	b Rig	_	0.5	0.5	0.5 m
Commente ente Cickerrigore	billig		0.0	0.0	0.5 111
k-Wert Tertiärsand	k (ts)	=	5.0E-05	5.0E-05	5.0E-05 m/s
k-Wert Quartärkies (Versickerung)	ksick (q)	=	1.3E-03	1.3E-03	1.3E-03 m/s
Quartäre Grundwassermächtigkeit HW End (Mittel)	H End (q)	=	5.5	5.5	5.7 m
Quartäre Grundwassermächtigkeit HW Bau (Mittel)	H Bau (q)	=	4.4	4.3	4.4 m
Entwässerbarer Porenanteil Quartär	n (q)	=	0.25	0.25	0.25
Entwässerbarer Porenanteil Tertiär (Mittel Ton/Sand)	n (t)	=	0.15	0.15	0.15
Bemessungsniederschlag mit 10-jähriger Häufigkeit	r 15(0,1)	=	0.271	0.271	0.271 m³/(s ha)

2. SBSS PFA 1: Anhang 4 zu Anlage 18.1 A Hydraulische Berechnungen Rettungsschächte: (RS2 Bau-km 103,8+72, RS3 Bau-km 104,4+45, RS4 Bau-km 104,9+47)

I Rettungsschächte (Vertikalschächte): Berechnung der Wassermengen

Die Abschätzung der zu fördernden Wassermengen der Restwasserhaltung des wasserundurchlässigen Baugrubentroges erfolgt für den hohen angenommenen Wasserstand HWBau .

Trogwasser (vereinfacht zum erstmaligen Absenken)

	RS 2	RS 3	RS 4
$\forall Trog = A \ x \ [s \ (q) \ x \ n \ (q) + s \ (t) \ x \ n \ (t)] =$	139	209	230 m ³

Zum Abpumpen dieser Wassermenge innerhalb von 10 Tagen ist folgend Pumpleistung erforderlich:

QTrog \times 1000 / (10 × 24 × 3600) = 0.2 0.3 l/s

Restwasser aus Umströmung der Umschließung:

Restwasser aus Umströmung der Umschließung wird nicht angesetzt, da das den Schächten von unten durch eine Sohlschicht zuströmente Wasser, bei ausreichender Brunnenanzahl und Tiefe vollständig von der Tertiärentspannung aufgenommen wird.

Sickerwasser aus der Baugrubenumschließung (nur Bohrpfahlwand / Schlitzwand):

Zur Abschätzung der Sickerwassermenge wird einheitlich q = 0,002 m³/s je 1000 m² benetzter Fläche der Baugrubenumschließung angenommen. Die Berechnung erfolgt für die benetzte Mantelfläche der Umschließung unter HWBau.

Höhe der benetzten Mantelfläche der Umschließung	5.2	11.8	10.7 m
Q Wand = $U \times s \times 0,002 / 1000 =$	0.0003	0.0007	0.0007 m ³ /s
Q Wand =	0.3	0.7	0.7 l/s

Bei einem Betrieb der Wasserhaltung von TWH ist entsprechend dieser Abschätzung etwa mit folgender Wassermenge zu rechnen:

Q Wand x $(3600 \times 24 \times 365 \times TWH / 12) =$ 6010 13639 12367 m³/TWH

Wassermenge der Tertiärentspannung / Tertiärenwässerung:

Zur überschlägigen Abschätzung des Wasserandrangs der Tertiärwasserhaltung wird von feinkornarmen Tertiärsandlagen der Gesamtmächtigkeit m_{entsp} ausgegangen, die im zu entspannenen und zu etwässernden

Tiefenbereich anstehen. Die Entspannung erfolgt bis auf das Niveau der Restwasserhaltung im Schacht.

Wasserandrang zur Baugrube (Ersatzbrunnen) bei gespanntem Grundwasser:

	1.0 2		110
ARE = d br / 2 =	7.0	7.0	7.0 m
$R = 3000 \times s \times \sqrt{k} (ts) =$	189	316	352 m
Q entsp. = $(2 \times \pi \times k \text{ (ts)} \times m_{\text{entsp}} \times s_{\text{ent}} / (\text{InR - InARE}) =$	0.0027	0.0206	$0.0072 \text{ m}^3/\text{s}$
Q entsp. =	2.7	20.6	7.2 l/s

RS 2

RS 3

RS 4

Bei einer Betriebszeit der Wasserhaltung von TWH fallen entsprechend dieser Abschätzung etwa folgende Wassermengen aus der Tertiärwasserhaltung an:

Q Entsp x (3600 x 24 x 365 x TWH / 12) = 49955 379684 132216 m³/TWH

21.4 7.9 l/s

3.0

2. SBSS PFA 1: Anhang 4 zu Anlage 18.1 A Hydraulische Berechnungen Rettungsschächte: (RS2 Bau-km 103,8+72, RS3 Bau-km 104,4+45, RS4 Bau-km 104,9+47)

Im dichten Baugrubentrog muß das anfallende Niederschlagswasser zeitlich verzögert von der Wasserhaltung gefördert werden. Beim 15-minütigen Bemessungsregen r_{1500 20} fällt in der Baugrube folgende Wassermenge an:

Beim 15-minütigen Bemessungsregen r _{15(0,2)} fällt in der Baugrube folgende Wassermeng	je an:		
	RS 2	RS 3	RS 4
QN15 = $r_{15(0,2)}$ x 15min x 60s x A x 1/10000m ² =	1.9	1.9	1.9 m³ / 15 min
Diese Niederschlagswassermenge kann bei einer zusätzlichen Pumpleistung von in etwa drei Stunden mit der Restwasserhaltung abgepumpt werden	0.2	0.2	0.2 l/s
Bei einem Jahresniederschlag von ca. 950 mm fällt bei einer angenommenen Bauzeit vo Inbetriebnahme einer geordneten Oberflächenentwässerung folgende Wassermenge an			
Q NJahr = 0,95 m³/m² x A x TWH/ 12 =	44	44	44 m³/TWH
	RS 2	RS 3	RS 4
Dies entspricht bei der Restwasserhaltung einer durchschnittlichen Förderrate von:	0.000002	0.000002	0.000002 m/s =
	0.00237	0.00237	0.00237 l/s
Gesamtwassermengen während der Bauzeit:			
Rettungsschächte (Vertikalschächte)			
Wasseranfall:	RS 2	RS 3	RS 4
Trogwasser	0.2	0.2	0.3 ^{I/s}
Sickerwasser Baugrubenumschließung	0.3	0.7	0.7 ^{I/s}
Tertiärentspannung / Tertiärwasserhaltung	2.7	20.6	7.2 ^{I/s}
Niederschlagswasser (Mittel)	0.0	0.0	0.0 ^{I/s}
Niederschlagswasser (Starkregen)	0.2	0.2	0.2 ^{I/s}
Während des Leerpumpens des Troges	0.5	1.0	0.9 ^{I/s}
Wasserhaltungsbetrieb + Starkregen	3.2	21.6	8.0 ^{I/s}
Wasserhaltungsbetrieb	3.0	21.4	7.9 ^{I/s}
Gesamtwassermenge:	56148	393576	144857 ^{m³}
Während des Leerpumpens des Troges ist von folgender maximaler rechnerischer Was:	sermenge auszı	ugehen:	
Q MAX Absenk = Trogw. + Sickerw. + Niederschlag =	0.5	1.0	0.9 l/s
Nach Inbetriebnahme der Tertiärentspannung ist unter Berücksichtigung eines Starkregerechnerischer Restwassermenge auszugehen:	enereignisses vo	on folgender	maximaler
Q MAX Rest = Sickerwasser + Tertiärentspannung + Starkregen =	3.2	21.6	8.0 l/s
Ohne Berücksichtigung des Starkregens reduziert sich die rechnerische Restwassermer	nge nach dem L	eerpumpen o	des Troges

Q MAX Rest = Sickerw.+ Tertiärentspannung + Niederschlagswasser =

2. SBSS PFA 1: Anhang 4 zu Anlage 18.1 A Hydraulische Berechnungen Rettungsschächte: (RS2 Bau-km 103,8+72, RS3 Bau-km 104,4+45, RS4 Bau-km 104,9+47)

II Rettungssch	hächte (Vertikalschächte): Berechnung der Grundwasserversic	kerung		
		RS 2	RS 3	RS 4
	asserhaltungsbetrieb fallen rechnerisch bis zu ca. Versickerungsmöglichkeit durch Brunnen oder Rigolen im Quartärk	3.0 ies untersucht	21.4	7.9 l/s
Maximal zu vers	sickernde Wassermenge Qs =	0.0032	0.0216	$0.0080 \text{ m}^3/\text{s}$
Die rechnerisch	ckerung (Quartär ungespannt): ne Abschätzung der Brunnenversickerung im Quartär wird für den u u von Nachbargebäuden über natürliche Verhältnisse hinaus zu ver		nd H\&au du	rchgeführt.
wird der Aufstau	u im Brunnen wird für die Berechnung auf den Wasserstand HWEn	dbeschränkt.		
Reichweite R (c	q) des Aufstaukegels bei Versickerung im Quartärkies			
		RS 2	RS 3	RS 4
R(q) = 3000 x	zq x√ksick (q) =	119	130	141 m
Die benötigte F	läche nach Depuit-Thiem (Ersatzradius):			
	$q)+\pi \times ksick (q) \times [HBau^2 - (HBau + zq)^2] / Qs =$	-9.03	2.64	-1.73
ARE =		0.00	13.99	0.18 m
Der Aufstaukeg	el reicht je nach Versickerungsstandort unter Nachbargrundstücke,	geht aber nicht über F	łWEnd hinaus	S.
Vom Einzelbrun	nnen abströmende Wassermenge:	B0.0	D0.0	D0.4
Qs =	$\pi \times \text{ksick} \times [\text{HBau}^2 - (\text{HBau} + \text{zq})^2] / (\text{In R} - \text{In rq}) =$	RS 2 -0.0074	RS 3 -0.00 79	RS 4 -0.0087 m³/s
Qs =	** ** ** ** ** ** ** ** ** ** ** ** **	-7.4	-7.9	-8.7 l/s
Fassungsvermö	ögen eines Sickerbrunnens:			
qs =	$2 \times rq \times \pi \times h'q \times \sqrt{(k \text{ sick } (q) / 15} =$	-0.0249	-0.0249	-0.0258 m³/s
qs =		-24.9	-24.9	-25.8 l/s
Der geringere V	Vert aus Abströmung und Fassungsvermögen ist maßgeblich:			
rechnerische M	indestanzahl der Brunnen:	0.4	2.7	0.9 Stk
Rigolenversick	kerung im Quartär:			
Die Abschätzun	ng der Sickerleistung erfolgt in Anlehnung an ATV 138 für eine Rigo	le mit 0,5 m Breite, die	1 m hoch	
qs =	(bRig + z/2) x k sick (q) =	-0.0013	-0.0013	m³/s je -0.0013 lfdm
The second secon	()	5.5010		oo.o num
qs =		-1.30	-1.30	-1.30 l/s je lfdn

Ausgangswerte und geometrische Verhältnisse (Stollenbauwerke):			RS 2	RS 3	RS 4
Gesamtdauer der Wasserhaltung ca.	TWH	=	15	15	15 Mon
Zu entwässernde Länge des Stollensystems zusammen mit dem Vertikalschacht im Grundriss ca.	а	=	75	100	130 m
Zu entwässernde mittlere Breite im Grundriss ca.	b	=	10	10	10
Stollendurchmesser bzw. Höhe ca.	d Stollen	=	5	5	5 m
Zugangsschacht: Grundfläche ca.	Α	=	750	1000	1300 m²
GOK ca.			522.0	522.9	520.3 müNN
höchste Stollenfirste ca.			512.5	507.0	503.5 müNN
tiefste Stollensohle ca.			496.0	489.0	483.0 müNN
OK-Tertiär			512.0	511.5	511.0 müNN
Wasserstand Bauzeit HWBau			516.4	515.8	515.4 müNN
Bemessungswasserstand HWEnd			517.5	517.0	516.7 müNN
Absenkziel			495.5	488.5	482.5 müNN
Druckluftunterstützung	Р	=	1.0	1.0	1.0 bar
Mindesttiefe Entspannung unter Sohle: ca 1 ,5 x d Stollen			6.8	6.8	6.8 m
Mindesttiefe Entspannungsbrunnen bis müNN ca.			489.3	482.3	476.3 müNN
Mindesttiefe Entspannungsbrunnen ab GOK ca.			32.8	40.7	44.1 m
Filterstrecke Entspannungs- Entwässerungsbrunnen ca.		von	10	16	17 m
		bis	33	41	44 m
Angenommene mittlere Gesamtdicke der zu entspannenden bzw. z entwässernden Tertiärsandlagen gemäß Bodenaufschlüssen	u m _{entsp}	=	10.0	17	10.5 m
Gesamtabsenkung bei HWBau (Mittel)	S	=	20.9	27.3	32.9 m
Potential der Entspannungswasserhaltung unter Berücksichtigung der Druckluft	S _{ent}	=	10.9	17.3	22.9 m
UK Filter Versickerungsbrunnen Quartär (=OK Tertiär)			512.0	511.5	511.0 müNN
Stauhöhe im Sickerbrunnen Quartär (max. HWEnd)	zq	=	1.1	1.2	1.3 m
Stauhöhe im Sickerbrunnen Quartär (bis GOK)	zq max	=	5.6	7.1	4.9 m
Stauhöhe in der Rigole	zrig	=	1.0	1.0	1.0 m
Brunnenradius (Quartär)	rq	=	0.30	0.30	0.30 m
benetzte Filterlänge Quartärversickerung	h′q	=	5.5	5.5	5.7 m
Sohlbreite eine Sickerrigole	b Rig	=	0.5	0.5	0.5 m
k-Wert Tertiärsand	k (ts)	=	5.0E-05	5.0E-05	5.0E-05 m/s
k-Wert Quartärkies (Versickerung)	ksick (q)	=	1.3E-03	1.3E-03	1.3E-03 m/s
Quartäre Grundwassermächtigkeit HWBau (Mittel)	HBau (q)	=	4.4	4.3	4.4 m

L Rettungsschächte (Stollenbauwerke): Berechnung der zu fördernden Wassermengen

Die Abschätzung der zur Herstellung der Stollen zu fördernden Wassermengen erfolgt für den hohen angenommenen Wasserstand HWBau als Zuströmung zu einer (fiktiven) Baugrube in der alle zu errichtenden Stollen liegen (Ersatzbrunnenverfahrern).

Wassermenge der Tertiärwasserhaltung- und Entspannung:

Zur überschlägigen Abschätzung des Wasserandrangs wird der Zustrom in allen Tertiärsandlagen der Gesamtmächtigkeit mentsp berechnet, die von Brunnen im Tiefenbereich des Stollens und der darunter liegenden Entspannungstiefe erfasst werden.

Die Entspannung erfolgt bis auf Höhe UK-Stollen - 0,5 m

Wasserandrang zur Baugrube (Ersatzbrunnen) bei gespanntem Grundwasser:

ARE = a x 0,195 + b x 0,385 (für rechteckige Baugruben) ARE = a /3 (für langgestreckte Baugruben)	K3 2	K3 3	N3 4
ARE =	25.0	33.3	43.3 m
$R = 3000 \times s \times \sqrt{k (ts)} =$	443	579	698 m
Q = $(2 \times \pi \times k \text{ (ts)} \times m_{entsp} \times s_{ent} / (InR - InARE) =$	0.0119	0.0324	0.0272 m ³ /s
Q =	11.9	32.4	27.2 l/s

Bei einer Betriebszeit der Wasserhaltung von TWH fallen entsprechend dieser Abschätzung etwa folgende Wassermengen aus der Tertiärwasserhaltung/entspannung an:

Q Entsp x (3600 x 24 x 365 x TWH / 12) = 469426 1275704 1071427 m³/TWH

2. SBSS PFA 1: Anhang 4 zu Anlage 18.1 A Hydraulische Berechnungen Rettungsschächte: (RS2 Bau-km 103,8+72, RS3 Bau-km 104,4+45, RS4 Bau-km 104,9+47)

II Rettungsschächte (Stollenbauwerke): Berechnung der Grundwasserversickerung

Maximal zu versickernde Wassermenge Qs = 0.0119 0.0324 0.0272 m³/s

Brunnenversickerung (Quartär ungespannt):

Die rechnerische Abschätzung der Brunnenversickerung im Quartär wird für den ungünstigen Wasserstand HWBau durchgeführt. Um den Einstau von Nachbargebäuden über natürliche Verhältnisse

hinaus zu verhindern, wird der Aufstau im Brunnen für die Berechnung auf HWEnd begrenzt.

Reichweite R (q) des Aufstaukegels bei Versickerung im Quartärkies	RS 2	RS 3	RS 4
R (q) = $3000 \times zq \times \sqrt{ksick}$ (q) =	119	130	141 m
Die benötigte Fläche nach Depuit-Thiem (Ersatzradius):			
In ARE = In R (q)+ π x ksick (q) x [HBau - (HBau + zq) ²] / Qs =	1.04	3.38	2.97
ARE =	2.84	29.43	19.55 m

Der Aufstaukegel reicht je nach Versickerungsstandort unter Nachbargrundstücke, geht aber nicht über HWEnd hinaus.

Vom Einzelbrunnen abströmende Wassermenge:

Qs =	π x ksick x [HBau ² - (HBau + zq) ²] / (ln R - ln rq) =	-0.0074	-0.0079	-0.0087 m ³ /s
Qs =		-7.4	-7.9	-8.7 l/s
Fassungs	svermögen eines Sickerbrunnens:			
qs =	$2 \times rq \times \pi \times h'q \times \sqrt{(k \text{ sick } (q) / 15} =$	-0.0249	-0.0249	-0.0258 m³/s
qs =		-24.9	-24.9	-25.8 l/s
•	gere Wert aus Abströmung und Fassungsvermögen ist maßgeblich: che Mindestanzahl der Brunnen:	1.6	4.1	3.1 Stk

Rigolenversickerung im Quartär:

Die Abschätzung der Sickerleistung erfolgt in Anlehnung an ATV 138 für eine Rigole mit 0,5 m Breite, die 1 m hoch eingestaut werden kann.

qs =	$(bRig + z/2) \times k \operatorname{sick}(q) =$	-0.0013	-0.0013	-0.0013 m³/s je lfdm
qs =		-1.30	-1.30	-1.30 l/s je lfdm
l ria=	$Qs/q_s =$	9.2	24.9	20.9 m